Neural Network for Heterogeneous Annotations
نویسندگان
چکیده
Multiple treebanks annotated under heterogeneous standards give rise to the research question of best utilizing multiple resources for improving statistical models. Prior research has focused on discrete models, leveraging stacking and multi-view learning to address the problem. In this paper, we empirically investigate heterogeneous annotations using neural network models, building a neural network counterpart to discrete stacking and multiview learning, respectively, finding that neural models have their unique advantages thanks to the freedom from manual feature engineering. Neural model achieves not only better accuracy improvements, but also an order of magnitude faster speed compared to its discrete baseline, adding little time cost compared to a neural model trained on a single treebank.
منابع مشابه
Representation of Adsorption Data for the Case of Energetically Heterogeneous Solid Surfaces Using Artificial Neural Network
متن کامل
Cross-topic Argument Mining from Heterogeneous Sources Using Attention-based Neural Networks
Argument mining is a core technology for automating argument search in large document collections. Despite its usefulness for this task, most current approaches to argument mining are designed for use only with specific text types and fall short when applied to heterogeneous texts. In this paper, we propose a new sentential annotation scheme that is reliably applicable by crowd workers to arbit...
متن کاملDecoupled Deep Neural Network for Semi-supervised Semantic Segmentation
We propose a novel deep neural network architecture for semi-supervised semantic segmentation using heterogeneous annotations. Contrary to existing approaches posing semantic segmentation as a single task of region-based classification, our algorithm decouples classification and segmentation, and learns a separate network for each task. In this architecture, labels associated with an image are ...
متن کاملA committee machine approach for predicting permeability from well log data: a case study from a heterogeneous carbonate reservoir, Balal oil Field, Persian Gulf
Permeability prediction problem has been examined using several methods such as empirical formulas, regression analysis and intelligent systems especially neural networks and fuzzy logic. This study proposes an improved and novel model for predicting permeability from conventional well log data. The methodology is integration of empirical formulas, multiple regression and neuro-fuzzy in a commi...
متن کاملUnsupervised Pre-training Across Image Domains Improves Lung Tissue Classification
The detection and classification of anomalies relevant for disease diagnosis or treatment monitoring is important during computational medical image analysis. Often, obtaining sufficient annotated training data to represent natural variability well is unfeasible. At the same time, data is frequently collected across multiple sites with heterogeneous medical imaging equipment. In this paper we p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016